Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Res ; : 119110, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38723992

RESUMEN

Landfills require effective containment systems to prevent the leakage of leachate into the underground environment. Cutoff walls are commonly employed for this purpose, with options including rigid and flexible designs. In areas where structural strength is not a primary concern, flexible cutoff walls offer lower permeability and environmental benefits due to their lack of cement content, thereby reducing CO2 emissions. This study investigates the use of dredged sediment and attapulgite as materials for flexible cutoff walls. Through analyses of bound water content, free water content, hydraulic conductivity, and scanning electron microscopy, we explore the impact of confining pressures on cutoff wall permeability. Our findings reveal that the consolidation induced by confining pressure does not significantly alter the bound water content within the cutoff wall. Instead, changes in water content are predominantly attributed to variations in free water content. Under identical confining pressures, we observe a positive correlation between permeability and hydraulic gradient, with permeability increasing as the hydraulic gradient rises, and anti-permeability decreasing accordingly. Additionally, when holding the hydraulic gradient constant, increasing confining pressure leads to a continuous decrease in permeability. Microscopic analyses highlight that high confining pressure not only compresses pore diameter but also alters pore morphology, thereby influencing permeability. This study contributes to the understanding of cutoff wall behavior under different conditions. Our results demonstrate that increasing confining pressure during soil consolidation effectively reduces cutoff wall permeability to meet design standards. However, the influence of high leachate head on permeability should also be considered. These findings provide a more environmentally friendly and lower permeability option for landfill sites, which is significant for the design and enhancement of containment systems in landfill sites.

2.
Environ Res ; 252(Pt 2): 118895, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38604483

RESUMEN

Landfill gases can have numerous detrimental effects on the global climate and urban ecological environment. The protective efficacy of the final cover layer against landfill gases, following exposure to periodic natural meteorological changes during long-term service, remains unclear. This study conducted centrifuge tests and gas permeability tests on compacted loess. The experiments examined the impact and relationship of wetting-drying cycles and dry density on the soil water characteristic curve (SWCC) and gas permeability of compacted loess. Research findings reveal that during the dehumidification process of compacted loess, the gas permeability increases non-linearly, varying the gas permeability of soil with different densities to different extents under wetting-drying cycles. Two models were introduced to describe the impact of wetting-drying cycles on gas permeability of loess with various dry densities, where fitting parameters increased with the number of wetting-drying cycles. Sensitivity analysis of the parameters in the Parker-Van Genuchten-Mualem (P-VG-M) model suggests that parameter γ's accuracy should be ensured in practical applications. Finally, from a microstructural perspective, wetting-drying cycles cause dispersed clay and other binding materials coalesce to fill minuscule pores, leading to an increase in the effective pores responsible for the gas permeability of the soil. These research results offer valuable guidance for designing water retention and gas permeability in compacted loess cover layers under wetting-drying cycles.

3.
Chemosphere ; 352: 141399, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38331263

RESUMEN

Layered double hydroxides (LDHs) have been recognized to have great potential for the treatment of heavy metals in wastewater and soil through various mechanisms. Isomorphic substitution is an important mechanism for the sorption of heavy metal cations with LDH reconstruction and highly stable product formation. However, sorption performance, structure-related relationships, and, more importantly, stability are still poorly understood. In this study, a series of LDHs with different structures were synthesized to evaluate their cadmium (Cd) sorption performance and stability concerning the isomorphic substitution mechanism. Divalent cation types in the LDH lattice determined the Cd sorption capacity as well as the isomorphic substitution possibility, following the order of hydroxide solubility of divalent cations (MII): Ca2+>Mg2+>(Cd2+) > Ni2+>Zn2+. In addition, CaAl-LDH exhibited a super-high Cd sorption capacity of 625.0 mg g-1. Cd sorption by LDHs with different interlayer anion types and divalent/trivalent cation molar ratios varied due to crystallite size-related MII release through cation-exchange/isomorphic substitution. Coexisting cations (e.g., Zn2+, Ni2+, Mg2+) influence the sorption performance of MII-LDH mainly through isomorphic substitution mechanism, largely depending on the solubility of MII(OH)2 with a trend of stable product formation. Furthermore, Mg2.9Cd0.1AlCl-LDH was fabricated, and limited Cd dissolution without destruction of the LDH structure was observed under various conditions. For example, only 7.69%, 2.16% and 0.96% of Cd was released from as-prepared Mg2.9Cd0.1AlCl-LDH in NaCl solution (0.02 mol L-1, pH 5), soil extract, and soil matrix, respectively. The very low leaching of Cd from Cd-containing LDHs indicated the high stability of LDH-sorbed Cd via isomorphic substitution and feasible practical application in Cd sequestration in wastewater treatment and soil remediation.


Asunto(s)
Cadmio , Metales Pesados , Cationes Bivalentes , Cationes , Hidróxidos/química , Suelo
4.
Environ Sci Pollut Res Int ; 30(41): 95002-95012, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37561299

RESUMEN

Solidified sludge can be regarded as a new type of earth cover material for domestic waste landfill. But the acidic environment result from the leachate in landfill is a potential threat to cement-based material. In order to evaluate the deterioration risk of solidified sludge in acidic environment, the leaching process of solidified sludge components under different pH conditions was investigated by taking Ni and Cr as the indexes of semi-dynamic leaching test. Under strongly acid environment (pH = 2), the leaching rate of Cr is significantly higher than that in the weakly acid environment or nearly neutral environment, and the diffusion coefficient increased by an order of magnitudes. The leaching and diffusion coefficients of Ni undergo a small influence from the adding amount of cement and pH value. Both Ni and Cr have relatively low migration ratio.


Asunto(s)
Metales Pesados , Aguas del Alcantarillado , Aguas del Alcantarillado/química , Metales Pesados/química , Instalaciones de Eliminación de Residuos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...